资源类型

期刊论文 112

会议视频 2

年份

2024 1

2023 12

2022 7

2021 7

2020 7

2019 5

2018 7

2017 9

2016 2

2015 5

2014 8

2013 7

2012 4

2011 7

2010 6

2009 5

2008 2

2007 6

2006 1

2005 1

展开 ︾

关键词

长短期记忆网络 3

能源 2

难加工材料 2

Cu(Inx 1

Ga1–x)Se2 1

LED灯具;加速老化测试;中位寿命;滑动平均误差 1

L唱M算法 1

Mallat算法 1

Matlab/Simulink仿真 1

Meyer小波变换 1

UniDrop 1

中国油气田开发 1

临震信号 1

人工神经网络 1

优化算法 1

低渗透油田 1

充电模式;充电时长;随机森林;长短期记忆网络(LSTM);简化粒子群优化算法(SPSO) 1

兴趣点推荐 1

冰激振动 1

展开 ︾

检索范围:

排序: 展示方式:

fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cutnitrification-denitrification and partial anammox

Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1318-x

摘要: Abstract • Sludge fermentation liquid addition resulted in a high NAR of 97.4%. • Extra NH4+-N from SFL was removed by anammox in anoxic phase. • Nitrogen removal efficiency of 92.51% was achieved in municipal wastewater. • The novel system could efficiently treat low COD/N municipal wastewater. Biological nitrogen removal of wastewater with low COD/N ratio could be enhanced by the addition of wasted sludge fermentation liquid (SFL), but the performance is usually limited by the introducing ammonium. In this study, the process of using SFL was successfully improved by involving anammox process. Real municipal wastewater with a low C/N ratio of 2.8–3.4 was treated in a sequencing batch reactor (SBR). The SBR was operated under anaerobic-aerobic-anoxic (AOA) mode and excess SFL was added into the anoxic phase. Stable short-cut nitrification was achieved after 46d and then anammox sludge was inoculated. In the stable period, effluent total inorganic nitrogen (TIN) was less than 4.3 mg/L with removal efficiency of 92.3%. Further analysis suggests that anammox bacteria, mainly affiliated with Candidatus_Kuenenia, successfully reduced the external ammonia from the SFL and contributed approximately 28%–43% to TIN removal. Overall, this study suggests anammox could be combined with SFL addition, resulting in a stable enhanced nitrogen biological removal.

关键词: Sludge fermentation liquid     Municipal wastewater     Advanced nitrogen removal     Short-cut nitrification     Partial anammox    

Production of N

Youkui GONG,Yongzhen PENG,Shuying WANG,Sai WANG

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 589-597 doi: 10.1007/s11783-013-0571-7

摘要: The N O production in two nitrogen removal processes treating domestic wastewater was investigated in laboratory-scale aerobic-anoxic sequencing batch reactors (SBRs). Results showed that N O emission happened in the aerobic phase rather than in the anoxic phase. During the aerobic phase, the nitrogen conversion to N O gas was 27.7% and 36.8% of loss for conventional biologic N-removal process and short-cut biologic N-removal process. The dissolved N O was reduced to N in the anoxic denitrification phase. The N O production rate increased with the increasing of nitrite concentration and ceased when oxidation was terminated. Higher nitrite accumulation resulted in higher N O emission in the short-cut nitrogen removal process. Pulse-wise addition of 20 mg gave rise to 3-fold of N O emission in the conventional N-removal process, while little change happened with 20 mg was added to SBR1.

关键词: conventional N-removal process     N2O     short-cut N-removal process     nitrite accumulation     ammonia- oxidizing bacteria (AOB) denitrification    

Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation

Jun WANG

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 19-32 doi: 10.1007/s11465-009-0082-1

摘要: An experimental study of the depth of cut in multipass abrasive waterjet (AWJ) cutting of alumina ceramics with controlled nozzle oscillation is presented. It is found that this cutting technique can significantly increase the depth of cut by an average of 50.8% as compared to single pass cutting without nozzle oscillation under the corresponding cutting conditions and within the same cutting time. Predictive models for the depth of cut are then developed. The modelling process starts with single pass cutting using a dimensional analysis technique and the particle erosion theories applied to alumina ceramics, before progressing to the development of the models for multipass cutting. The models are finally assessed both qualitatively and quantitatively with experimental data. It is shown that the model predictions are in good agreement with the experimental data with the average deviations of about 1%.

关键词: abrasive waterjet     engineering ceramics     depth of cut     cutting performance     nozzle oscillation     machining    

地铁隧道爆破施工下穿地表建筑物的减振技术研究

方俊波

《中国工程科学》 2014年 第16卷 第11期   页码 58-64

摘要:

城市地铁区间隧道爆破施工中面临的一个重要问题就是降低爆破振动对临近地表建筑物的影 响。青岛地铁一期工程03号线03标段下穿建筑物时,为了确保距隧道拱顶5~8 m的地表建筑物安全,采 用了大中空孔直眼掏槽技术、一次起爆分部延时爆破、浅孔多眼等技术,将地表建筑物最大垂直振速控制 在国标允许范围之内,隧道通过后地表建筑物完好无损。并在施工中解决了大断面隧道爆破施工导爆管 雷管段数不能满足施工要求、分断面施工不能同时实施爆破作业,施工效率低下的问题,既保证了工程施 工安全又满足了进度要求。

关键词: 爆破设计     直眼掏槽     大直径中空孔     分部延时起爆     浅孔爆破    

Simultaneous nitrification and denitrification in activated sludge system under low oxygen concentration

ZHANG Peng, ZHOU Qi

《环境科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 49-52 doi: 10.1007/s11783-007-0009-1

摘要: Simultaneous nitrification and denitrification (SND), which is more economical compared with the traditional method for nitrogen removal, is studied in this paper. In order to find the suitable conditions of this process, a mixed flow activated sludge system under low oxygen concentration is investigated, and some key control parameters are examined for nitrogen removal from synthetic wastewater. The results show that SND is accessible when oxygen concentration is 0.3 0.8 mg/L. The nitrogen removal rate can be obtained up to 66.7% with solids retention time (SRT) of 45 d, C/N value of 10, and F/M ratio of 0.1 g COD/(g MLSS·d). Theoretical analysis indicates that SND is a physical phenomenon and governed by oxygen diffusion in flocs.

关键词: synthetic wastewater     accessible     Simultaneous nitrification     MLSS·d     diffusion    

Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification

《环境科学与工程前沿(英文)》 2023年 第17卷 第6期 doi: 10.1007/s11783-023-1668-2

摘要:

● Efficient carbon methanation and nitrogen removal was achieved in AnMBR-PN/A system.

关键词: Anaerobic membrane bioreactor     Partial nitrification/Anammox     Carbon separation     Chemolitrophic nitrogen removal    

A heterotrophic nitrification-aerobic denitrification bacterium TJPU05 suitable for nitrogen removal

《环境科学与工程前沿(英文)》 2022年 第16卷 第6期 doi: 10.1007/s11783-021-1503-6

摘要:

H. venusta TJPU05 showed excellent HN-AD ability at high salinity.

关键词: Salt-tolerant bacteria     H. venusta TJPU05     Heterotrophic nitrification and aerobic denitrification     High-salinity wastewater    

ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING

《农业科学与工程前沿(英文)》 2022年 第9卷 第2期   页码 177-186 doi: 10.15302/J-FASE-2021421

摘要:

A range of plant species produce root exudates that inhibit ammonia-oxidizing microorganisms. This biological nitrification inhibition (BNI) capacity can decrease N loss and increase N uptake from the rhizosphere. This study sought evidence for the existence and magnitude of BNI capacity in canola ( Brassica napus). Seedlings of three canola cultivars, Brachiaria humidicola(BNI positive) and wheat ( Triticum aestivum) were grown in a hydroponic system. Root exudates were collected and their inhibition of the ammonia oxidizing bacterium, Nitrosospira multiformis, was tested. Subsequent pot experiments were used to test the inhibition of native nitrifying communities in soil. Root exudates from canola significantly reduced nitrification rates of both N. multiformis cultures and native soil microbial communities. The level of nitrification inhibition across the three cultivars was similar to the well-studied high-BNI species B. humidicola. BNI capacity of canola may have implications for the N dynamics in farming systems and the N uptake efficiency of crops in rotational farming systems. By reducing nitrification rates canola crops may decrease N losses, increase plant N uptake and encourage microbial N immobilization and subsequently increase the pool of organic N that is available for mineralization during the following cereal crops.

关键词: ammonia oxidizing microorganisms / biological nitrification inhibition / farming rotations / nitrogen cycling / nitrogen use efficiency    

Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature

Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 937-944 doi: 10.1007/s11783-014-0668-7

摘要: Bioaugmentation is an effective method of treating municipal wastewater with high ammonia concentration in sequencing batch reactors (SBRs) at low temperature (10°C). The cold-adapted ammonia- and nitrite- oxidizing bacteria were enriched and inoculated, respectively, in the bioaugmentation systems. In synthetic wastewater treatment systems, the average -N removal efficiency in the bioaugmented system (85%) was much higher than that in the unbioaugmented system. The effluent -N concentration of the bioaugmented system was stably below 8 mg·L after 20 d operation. In municipal wastewater systems with bioaugmentation, the effluent -N concentration was below 8 mg·L after 15 d operation. The average -N removal efficiency in unbioaugmentation system (about 82%) was lower compared with that in the bioaugmentation system. By inoculating the cold-adapted nitrite-oxidizing bacteria (NOB) into the SBRs after 10 d operation, the nitrite concentration decreased rapidly, reducing the -N accumulation effectively at low temperature. The functional microorganisms were identified by PCR-DGGE, including uncultured sp., uncultured sp., sp. and uncultured sp. The results suggested that the cold-adapted microbial agent of ammonia-oxidizing bacteria (AOB) and NOB could accelerate the start-up and promote achieving the stable operation of the low-temperature SBRs for nitrification.

关键词: nitrification     sequencing batch reactors (SBRs)     bioaugmentation     low temperature    

Yuan-zhang Liu: a Short Biography

Anon

《工程管理前沿(英文)》 2014年 第1卷 第1期   页码 113-114 doi: 10.1530/J-FEM-2014016

Shou-rong Zhang: a Short Biography

Anon.

《工程管理前沿(英文)》 2014年 第1卷 第2期   页码 225-226 doi: 10.15302/J-FEM-2014030

Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional

Hongyan LI, Yu ZHANG, Min YANG, Yoichi KAMAGATA

《环境科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 43-48 doi: 10.1007/s11783-012-0397-8

摘要: The effects of hydraulic retention time (HRT) on the nitrification activities and population dynamics of a conventional activated sludge system fed with synthetic inorganic wastewater were investigated over a period of 260 days. When the HRT was gradually decreased from 30 to 5 h, the specific ammonium-oxidizing rates (SAOR) varied between 0.32 and 0.45 kg (kg mixed liquor suspended solids (MLSS)·d) , and the specific nitrate-forming rates (SNFR) increased from 0.11 to 0.50 kg (kg MLSS·d) , showing that the decrease in HRT led to a significant increase in the nitrite oxidation activity. According to fluorescence in situ hybridization (FISH) analysis results, the proportion of ammonia-oxidizing bacteria (AOBs) among the total bacteria decreased from 33% to 15% with the decrease in HRT, whereas the fraction of nitrite-oxidizing bacteria (NOBs), particularly the fast-growing sp., increased significantly (from 4% to 15% for NOBs and from 1.5% to 10.6% for sp.) with the decrease in HRT, which was in accordance with the changes in SNFR. A short HRT favored the relative growth of NOBs, particularly the fast-growing sp., in the conventional activated sludge system.

关键词: ammonia-oxidizing bacteria     hydraulic retention time     nitrification activity     nitrite-oxidizing bacteria     population dynamics    

Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater

LI Jun, GU Guowei, PENG Yongzhen, WEI Su

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 246-250 doi: 10.1007/s11783-007-0042-0

摘要: An aerobic sequencing batch biofilm reactor (SBBR) packed with Bauer rings was used to treat real domestic wastewater for simultaneous nitrification and denitrification. The SBBR is advantageous for creating an anoxic condition, and the biofilm can absorb and store carbon for good nitrification and denitrification. An average concentration of oxygen ranging from 0.8 to 4.0 mg/L was proved very efficient for nitrification and denitrification. Volumetric loads of TN dropped dramatically and effluent TN concentration increased quickly when the concentration of average dissolved oxygen was more than 4.0 mg/L. The efficiency of simultaneous nitrification and denitrification (SND) increased with increasing thickness of the biofilm. The influent concentration hardly affected the TN removal efficiency, but the effluent TN increased with increasing influent concentration. It is suggested that a subsequence for denitrification be added or influent amount be decreased to meet effluent quality requirements. At optimum operating parameters, the TN removal efficiency of 74% 82% could be achieved.

Community dynamics of ammonia oxidizing bacteria in a full-scale wastewater treatment system with nitrification

Xiaohui WANG, Xianghua WEN, Hengjing YAN, Kun DING, Man HU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 92-98 doi: 10.1007/s11783-010-0254-6

摘要: To determine whether the functional stability of nitrification was correlated to a stable community structure of ammonia oxidizing bacteria (AOB) in a full-scale wastewater treatment plant, the AOB community dynamics in a wastewater treatment system was monitored over one year. The community dynamics were investigated using specific PCR followed by terminal restriction fragment length polymorphism (T-RFLP) analysis of the gene. The T-RFLP results indicated that during the period of nitrification stability, the AOB community structure in the full-scale wastewater treatment system was relatively stable, and the average change rate every 15 d of the system was 6.6%±5.8%. The phylogenetic analysis of the cloned gene showed clearly that the dominant AOB in the system was spp. The results of this study indicated that throughout the study period, the AOB community structure was relatively stable in the full-scale wastewater treatment system with functional stability of nitrification.

关键词: ammonia-oxidizing bacteria (AOB)     community dynamics     terminal restriction fragment length polymorphism (T-RFLP)     nitrification performance    

Impact of total organic carbon and chlorine to ammonia ratio on nitrification in a bench-scale drinking

Yongji ZHANG, Lingling ZHOU, Guo ZENG, Huiping DENG, Guibai LI

《环境科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 430-437 doi: 10.1007/s11783-010-0247-5

摘要: Nitrification occurs in chloraminated drinking water systems and is affected by water quality parameters. The aim of this study was to investigate the impact of total organic carbon and chlorine to ammonia ratio on nitrification potential in a simulated drinking water distribution system as during chloramination. The occurrence of nitrification and activity of nitrifying bacteria was primarily monitored using four rotating annular bioreactors (RAB) with different chlorine to ammonia ratios and total organic carbon (TOC) levels. The results indicated that nitrification occurred despite at a low influent concentration of ammonia, and a high concentration of nitrite nitrogen was detected in the effluent. The study illustrated that reactors 1(R1) and 3 (R3), with higher TOC levels, produced more nitrite nitrogen, which was consistent with the ammonia-oxidizing bacteria (AOB) counts, and was linked to a relatively more rapid decay of chloramines in comparison to their counterparts (R2 and R4). The AOB and HPC counts were correlated during the biofilm formation with the establishment of nitrification. Biofilm AOB abundance was also higher in the high TOC reactors compared with the low TOC reactors. The chlorine to ammonia ratio did not have a significant impact on the occurrence of nitrification. Bulk water with a high TOC level supported the occurrence of nitrification, and AOB development occurred at all examined chlorine to ammonia dose ratios (3∶1 or 5∶1).

关键词: nitrification     drinking water     ammonia- oxidizing bacteria (AOB)     chloramines     organic carbon     heterotrophic bacteria    

标题 作者 时间 类型 操作

fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cutnitrification-denitrification and partial anammox

Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng

期刊论文

Production of N

Youkui GONG,Yongzhen PENG,Shuying WANG,Sai WANG

期刊论文

Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation

Jun WANG

期刊论文

地铁隧道爆破施工下穿地表建筑物的减振技术研究

方俊波

期刊论文

Simultaneous nitrification and denitrification in activated sludge system under low oxygen concentration

ZHANG Peng, ZHOU Qi

期刊论文

Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification

期刊论文

A heterotrophic nitrification-aerobic denitrification bacterium TJPU05 suitable for nitrogen removal

期刊论文

ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING

期刊论文

Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature

Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN

期刊论文

Yuan-zhang Liu: a Short Biography

Anon

期刊论文

Shou-rong Zhang: a Short Biography

Anon.

期刊论文

Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional

Hongyan LI, Yu ZHANG, Min YANG, Yoichi KAMAGATA

期刊论文

Factors affecting simultaneous nitrification and denitrification in an SBBR treating domestic wastewater

LI Jun, GU Guowei, PENG Yongzhen, WEI Su

期刊论文

Community dynamics of ammonia oxidizing bacteria in a full-scale wastewater treatment system with nitrification

Xiaohui WANG, Xianghua WEN, Hengjing YAN, Kun DING, Man HU

期刊论文

Impact of total organic carbon and chlorine to ammonia ratio on nitrification in a bench-scale drinking

Yongji ZHANG, Lingling ZHOU, Guo ZENG, Huiping DENG, Guibai LI

期刊论文